

ni.com/first

1

LabVIEW Programming for FRC Beginners (Using Simulation for Testing)

Doug Norman National Instruments April 24, 2013

What you will learn

- How simulation simplifies learning LabVIEW for FRC
- How to create and edit a robot program
- How to program sensors and actuators
- How to test drive your robot code
- How to write and test Autonomous code
- How to create a custom Dashboard

System Topology

FRC

All you need for Simulation

Laptop or Desktop PC*

* video card with dedicated memory

LabVIEW.

POWERED BY

What is LabVIEW?

- Graphical programming
- Virtual Instrument (VI)
 - Front panel (UI)
 - Block diagram (code)
 - Icon/connector
- Dataflow (data travels on wires)
- A VI can be a subVI

What is LabVIEW for FRC?

- LabVIEW Professional Development Package
- FRC specific Getting Started Window
- FRC specific library of VIs WPILib
- FRC specific Robot Projects
- FRC specific examples and tutorials
- FRC support: phone, forums, videos, documents

LabVIEW for FRC with Simulation

- Some Robot Projects contain predefined robots
 - Each robot has specific sensors and actuators
 - Each robot contains a wiring manifest (html file)
 - Predefined robots cannot be edited
- Simulator opens when code is run on My Computer
- Same code can run on a real robot
- Still need the Driver Station

Getting Started Window

- Projects
 - Create Robot Project
 - Create Dashboard Project
- Tutorials
 - Robot Simulation
 - Integrating Examples
- Support
 - Example Finder

Create FRC Robot Project

Run Robot main.vi – Test Default Code

1	E FRC Simulation Viewer
	FRC Simulation Viewer
	Simulate Time Factor View Follow/Zoom Color Driver Station IP Operation Side Driver Off Auto Set Close

Team Code VIs

Finish.vi

🧱 Periodic Tasks.vi

Robot Global Data.vi

Autonomous Independent.vi

Default Joystick and Motor Code

Robot Simulation Readme.html (Simulated Robot Manifest)

- List of actuators on the simulated robot
- List of sensors on the simulated robot
- Tutorial 10 Robot Simulation

Camera Servo

- Digital Module = Digital Module 1
- PWM Channel = PWM 5
- Angular Range = 170

Ultrasonic

- Ping Digital Module = Digital Module 1
- Ping DIO Channel = DIO 1
- Echo Digital Module = Digital Module 1
- Echo DIO Channel = DIO 2

Add Camera Servo Code

- Servo angle: left = 170, right = 0
- Joystick axis 3: up = -1, down = 1
- Line equation: y = -85x + 85

y = servo angle, x = joystick value

16

Add Gyro and Ultrasonic Code

- Read gyro and ultrasonic in Periodic Tasks Why?
- Write their values to global variables Why?
- Run and test this code using probes

Add Autonomous Code

- Easy to get and use the Gyro and Ultrasonic data
- Loops are okay here Why?

Add Code for Dashboard (Robot Side)

- Use Dashboard VIs to write a number, string, or Boolean value
 - Use same names robot angle and wall distance on Dashboard

Team Code VIs - Review

- Begin.vi open, register refnums
- Teleop.vi new joystick data, drive code
- 📉 Finish.vi close refnums

Periodic Tasks.vi – read sensors, share data, etc.

Robot Global Data.vi – added gyro angle and distance

Autonomous Independent.vi – use sensor data to drive

Create FRC Dashboard Project

Add Indicators to Dashboard Main.vi

FRC PC Dashboard [Dashboard Main.vi] Front Panel on 2013 Dashboard Project.lvproj/My Co	mputer
- File Edit View Project Operate Tools Window Help	Search
Camera Image Kinect Skeleton Variables Drive & Motors Rear Left Rear Left Rear Right Front Left Front Right 0 Mbps 0 fps Battery	Operation Test Checklist Customize by placing controls and indicators here and name to match Dashboard Variables on robot. Wall distance 0 0 0 0 0 0 0 0 0 0 0 0 0
2013 Dashboard Project.lvproj/My Computer 🖌	

- Place indicators on the Operation tab
 - Same names used in Periodic Tasks.vi on the robot

Troubleshoot Robot Code

- Use debugging techniques
 - Broken Run Arrow

4 57 2-1

Execution Highlighting

- Check for errors on Diagnostics tab of Driver Station
- Check that sensor data is what you expect

Conclusion

- Simulation simplifies learning LabVIEW for FRC
 - Only need a PC and a joystick
 - Same code can run on a real robot
- Experiment with other robot projects
 - Mecanum drive, arm and gripper

Questions?

Visit us at the National Instruments booth

