
1

Presenter
Presentation Notes
Note: before starting launch LabVIEW and the Example Finder, and do a palette search to have everything loaded and ready to go.

2

LabVIEW Programming for FRC Beginners
(Using Simulation for Testing)

Doug Norman
National Instruments

April 24, 2013

Presenter
Presentation Notes
This presentation teaches LabVIEW programming for FRC beginners using simulation to test code and drive a robot.

4

What you will learn

• How simulation simplifies learning LabVIEW for FRC
• How to create and edit a robot program
• How to program sensors and actuators
• How to test drive your robot code
• How to write and test Autonomous code
• How to create a custom Dashboard

Presenter
Presentation Notes
While this presentation covers programming for FRC beginners, it does not cover basic LabVIEW training. For basic LabVIEW training go to ni.com/frc

5

System Topology

Field
Management

System

Driver
Station Robot

cRIO II

Presenter
Presentation Notes
The cRIO is mounted on the robot. It has a fixed LabVIEW FPGA personality. Teams develop their robot program using LabVIEW Real-time and download it to the robot. The Driver Station runs a LabVIEW executable on a laptop that interfaces with the robot via the Field Management System. Teams can also write a Dashboard program in LabVIEW to see important robot data during competition.

6

All you need for Simulation

Laptop or Desktop PC*

Robot
Code

Driver
Station

Joystick

* video card with dedicated memory

Presenter
Presentation Notes
For simulation, all you need is a joystick and a good* laptop or desktop PC. You develop your robot program with LabVIEW for FRC the same way you would for a real robot. The difference is that it runs in a simulated physics engine instead of on a real-time target (cRIO). The Driver Station and Dashboard can also be run on the development machine, so no separate Driver Station laptop is needed.*good – means the PC has a video card with dedicated memory.

7

What is LabVIEW?

• Graphical programming
• Virtual Instrument (VI)
 Front panel (UI)
 Block diagram (code)
 Icon/connector

• Dataflow (data travels on wires)
• A VI can be a subVI

Presenter
Presentation Notes
LabVIEW is a graphical programming language – you draw your program. It is easy to learn and use, while also being a powerful, full featured programming language.LabVIEW programs are called virtual instruments (VIs). Each VI has a front panel and a block diagram. The front panel is the User Interface with controls (inputs) and indicators (outputs). The block diagram contains the graphical code. 	Controls are inputs and indicators are outputs.Each VI contains three main parts:Front Panel – How the user interacts with the VI.Block Diagram – The code that controls the program.Icon/Connector – Means of connecting a VI to other VIs.LabVIEW uses data flow, meaning that a node does not run until it has all the data from previous nodes at its input wires.	Every front panel control or indicator has a corresponding terminal on the block diagram. When a VI is run, values from controls flow through the block diagram, where they are used in the functions on the diagram, and the results are passed into other functions or indicators through wires.

8

What is LabVIEW for FRC?

• LabVIEW Professional Development Package
• FRC specific Getting Started Window
• FRC specific library of VIs – WPILib
• FRC specific Robot Projects
• FRC specific examples and tutorials
• FRC support: phone, forums, videos, documents

Presenter
Presentation Notes
LabVIEW for FRC is based on our full featured Professional Development Package. The only difference is that it is only licensed for one year – typically from January to January.In addition to the LabVIEW Full package, FRC includes additional features to make robot programming easier.

9

LabVIEW for FRC with Simulation

• Some Robot Projects contain predefined robots
 Each robot has specific sensors and actuators
 Each robot contains a wiring manifest (html file)
 Predefined robots cannot be edited

• Simulator opens when code is run on My Computer
• Same code can run on a real robot
• Still need the Driver Station

Presenter
Presentation Notes
For simulation choose a robot project with “hardware or simulation” in its name. This will ensure the project includes the wiring manifest (Robot Simulation Readme.html), as well as other needed simulation support files.While you can chose from three different simulated robots, you cannot edit the robots. The physical layout of each robot and the sensors and actuators on each robot are fixed. Our goal for simulation is not robot design, but rather robot programming.To run in simulation mode, Robot Main.vi must run in the My Computer context. More about this in a future slide.Just like a real robot, you must run the Driver Station and enable Teleop in order to use actuators.

10

Getting Started Window

• Projects
 Create Robot Project
 Create Dashboard Project

• Tutorials
 Robot Simulation
 Integrating Examples

• Support
 Example Finder

Presenter
Presentation Notes
The Getting Started Window is the best place to start. It is the first thing you see when LabVIEW is launched. If you already have VIs open, you can use the menu View>>Getting Started Window… to show it. Projects – where you will create your Robot Project and Dashboard Project. This presentation focuses mainly on the Robot Project We will also create a Dashboard Project Tutorials – everything from setting up hardware to developing your robot program. The Robot Simulation tutorial covers simulation basics. Utilities – image cRIO, setup Axis camera, etc. You can add your own utilities. Support – Example Finder and help links Use the Example Finder to learn the basics of programming sensors and actuators, as well as how to physically wire them.

11

Create FRC Robot Project

Presenter
Presentation Notes
Create the project:Project name = 2013 Robot Project (you can change this)cRIO IP address = 10.TE.AM.2 For example team 2468 would use 10.24.68.2, and team 206 would use 10.2.6.2For this presentation choose the default Arcade Drive RobotWe will start with Robot Main.vi. Once we learn a little about the basic code architecture, we will then look at Robot Simulation Readme.html to learn about the I/O on the simulated robot.Notice the Team Code folder. We will edit many of the VIs within this folder.

12

Run Robot main.vi – Test Default Code

Driver
Station

Robot Main.vi FRC Simulation Viewer

My Computer

Presenter
Presentation Notes
Open Robot Main.vi. Right-click in the lower left corner of Robot Main.vi and choose 2013 Robot Project.lvproj/My Computer. Wait a moment while the subVI’s reload.Run Robot Main.vi and the FRC Simulation Viewer opens.Make sure the Driver Station is running It should read “Simulated Robot” where the battery voltage normally resides Make sure you have a joystick connected Choose Teleoperated and Enable the robotDrive the robot in the FRC Simulation Viewer. Default programming already exists for reading the joystick and writing to the motors.

13

Team Code VIs

• Begin.vi
• Teleop.vi
• Finish.vi
• Periodic Tasks.vi
• Robot Global Data.vi
• Autonomous Independent.vi

Presenter
Presentation Notes
Notice that these are in the Team Code folder in the project. They also exist on the diagram of Robot Main.vi. Begin.vi Open and configure I/O RefNum Registry Set – register refnums to be used in other subVIs Teleop.vi Drive code usually goes here Keep this code lean – should be able to run in 20 ms Do not use loops – this already gets called in the main scheduling loop Finish.vi Close references, save data, etc. Periodic Tasks.vi Run code that you don’t want to affect the speed of Teleop Read sensors and write to global variables to make data available to Teleop and Autonomous Run independent control loops etc. Choose which loop for code (or create new loops) depending on how fast the code needs to run. For example a gyro sensor loop may not need to run at the same speed as a shooter motor control loop. Robot Global Data.vi Add global variables as needed to easily share data between subVIs. Caveat – to avoid race conditions, write to the global variable from only one place. Autonomous Independent.vi Write code to control robot in autonomous mode. Read global variable data served up by Periodic Tasks.vi. Loops are okay in this subVI – this subVI gets aborted by the scheduling loop when autonomous period is over.

14

Default Joystick and Motor Code

Begin.vi
(open, register refnums)

Teleop.vi
(drive code)

(no loops, keep it lean)

Finish.vi
(close refnums)

Presenter
Presentation Notes
Look at and explain these code snippets. Open Robot Main.vi and navigate to these subVIs on the diagram. Begin.vi – The motors and joystick are initialized and the refnum is registered (Set) for use by other VIs. Teleop.vi – The refnums are read (Get). Notice the refnum Set and Get names must exactly match. Joystick values are read and used to drive the motors. Ideally all the code within this VI can run within 20 ms. This VI gets called by the scheduling loop. The scheduling loop is indirectly throttled by the Driver Station to run every 20 ms. Finish.vi – This is where all references are closed. It is good programming practice to close references in order to release the resources used by them.

15

Robot Simulation Readme.html
(Simulated Robot Manifest)

• List of actuators on the simulated robot
• List of sensors on the simulated robot
• Tutorial 10 – Robot Simulation

Camera Servo
• Digital Module = Digital Module 1
• PWM Channel = PWM 5
• Angular Range = 170

Ultrasonic
• Ping Digital Module = Digital Module 1
• Ping DIO Channel = DIO 1
• Echo Digital Module = Digital Module 1
• Echo DIO Channel = DIO 2

Presenter
Presentation Notes
Robot Simulation Readme.html is in the project under My Computer. Open this file. It points to the Robotics Simulation tutorial for instructions. It contains a list of all the sensors and actuators on the simulated robot. It contains cRIO module and channel wiring information. This is the type of information that would be provided for you if someone built a real robot. Or it is information you would write down as you wired a real robot. If you don’t understand what these modules and channels mean, look at some FRC examples. Along with programming, the examples also show physical wiring for sensors and actuators.

16

Add Camera Servo Code

Begin.vi Teleop.vi Finish.vi
• Servo angle: left = 170, right = 0
• Joystick axis 3: up = -1, down = 1
• Line equation: y = -85x + 85

 y = servo angle, x = joystick value

x
y

Presenter
Presentation Notes
Now that we understand how the basic robot code works, and what sensors and actuators are available on the simulated robot, let’s edit the basic code by adding code to control the camera servo. Begin.vi – Here we initialize the servo and set the refnum registry with the name Camera Servo. Notice that the Servo Open is where we use the module, channel, and angular range values. This information is from the Robot Simulation Readme.html file. Teleop.vi – Here we use another axis from the joystick to set the angle of the camera servo. Using the standard ATTACK3 joystick from the FRC Kit of Parts, axis 3 is the throttle. This throttle outputs a value with a range from -1 (up position) to +1 (down position). The Servo Set Angle expects a value with a range from 170° (left) to 0° (right). We need to scale this joystick range of 2 to the servo range of 170. This is a simple equation of a line (y = mx + b) where y is the servo angle and x is the joystick value. Our solution of y = -85x + 85 will make the camera turn left (170°) when we move the throttle up (-1) and turn right (0°) when we move the throttle down (+1). Finish.vi – Close the Servo reference. We did not open a new joystick reference – it was already open, and there is already code to close it.

17

Add Gyro and Ultrasonic Code

Begin.vi Periodic Tasks.vi
Robot Global Data.vi

Finish.vi

• Read gyro and ultrasonic in Periodic Tasks – Why?
• Write their values to global variables – Why?
• Run and test this code using probes

Presenter
Presentation Notes
Now we are going to look at and add code to another of the Team Code VIs: Periodic Tasks.viBegin.vi – The modules and channels used are taken from the robot manifest file Robot Simulation Readme.htmlPeriodic Tasks.vi We read the gyro and ultrasonic values here and write them to global variables for several reasons:We don’t want this code to affect the speed at which Teleop.vi can run.Reading them here means they will be read independent of the Teleop or Autonomous stateWriting their values to global variables makes the data available in both Teleop and Autonomous (or anywhere else)

18

Add Autonomous Code

Straight for 3 seconds

• Easy to get and use the Gyro and Ultrasonic data
• Loops are okay here – Why?

Turn right 90° Drive 115 inches
from the wall

Turn left 90° Drive 50 inches
from the wall

Presenter
Presentation Notes
Explain this code: The inputs to Arcade Drive are in place of the X-axis and Y-axis joystick values used in Teleop. A value of -1 for the Y-axis joystick is full throttle forward. A positive X-axis joystick value will turn right, and a negative X-axis joystick value will turn left. Notice we are reading the gyro angle and distance global variables that we wrote to in Periodic Tasks.vi. Here we are using this data to control the robot. We might also want to see this information on the Dashboard (next slide). Loops are okay here because this VI gets aborted by the scheduling loop when autonomous period is over.Things you might change or improve:If something goes wrong with a measurement, you could get stuck in a while loop., The simple > and < comparisons are not a very good control algorithms.What happens when the last while loop finishes? We didn’t set motor outputs to zero. We will get error -44061, and Safety Update will set the motors to zero. It would be better to set the motors to zero in an additional loop, or disable Safety Config (then enable it in Teleop).

19

Add Code for Dashboard (Robot Side)

• Use Dashboard VIs to write a number, string, or Boolean value
• Use same names robot angle and wall distance on Dashboard

Periodic Tasks.vi

Presenter
Presentation Notes
The dashboard palette VIs make it easy to send data to the dashboard. Notice we are writing these values every 100 ms, so the dashboard will be consistently updated. It is important to remember the names robot angle and wall distance. We will use these same names for indicators on the Dashboard.

20

Team Code VIs - Review

• Begin.vi – open, register refnums
• Teleop.vi – new joystick data, drive code
• Finish.vi – close refnums
• Periodic Tasks.vi – read sensors, share data, etc.
• Robot Global Data.vi – added gyro angle and distance
• Autonomous Independent.vi – use sensor data to drive

Presenter
Presentation Notes
 Show these in the Team Code folder in the project

21

Create FRC Dashboard Project

Presenter
Presentation Notes
Create a dashboard project. Open Dashboard Main.vi.There is a default dashboard that opens when the Driver Station runs. But it is easy to create your own dashboard and send data to it from your robot.

22

Add Indicators to Dashboard Main.vi

• Place indicators on the Operation tab
• Same names used in Periodic Tasks.vi on the robot

Presenter
Presentation Notes
You can customize the dashboard code any way you choose. Here we just want to show how easy it is to see robot data without even editing the diagram code. All we have to do is:Make sure the indicators we add are on the Operations tabMake sure we use the same names (and data types) that we used in Periodic Tasks.vi of our robot code.Look at the diagram of Dashboard Main.vi. Point out the code that gets the references for all controls and indicators on the Operations tab.When finished editing you can close the original Dashboard exe and run this VI in place of it for testing. When you are finished testing, you can build your Dashboard Main.vi into an exe and replace the default exe:In the dashboard project under Build Specifications, right click on FRC PC Dashboard and choose Build.When the build is finished, choose Explore from the dialog to find the Dashboard.exe file. (Documents\LabVIEW Data\builds\FRC Dashboard Project\FRC PC Dashboard)Copy the exe to Program Files\FRC Dashboard. You may want to rename the existing exe first.

23

Troubleshoot Robot Code

• Use debugging techniques
 Broken Run Arrow
 Execution Highlighting
 Probes

• Check for errors on Diagnostics tab of Driver Station
• Check that sensor data is what you expect

Presenter
Presentation Notes
Broken Run Arrow on Robot Main.vi? Click on the run arrow to get a list of errors.Execution Highlighting – show on Teleop diagram. Notice this causes errors on Diagnostics tab of DS.Probe – show sensor data in Periodic Tasks.viData is not what we expected: note that you could probe to check the code that calculates the camera servo angle

24

Conclusion

• Simulation simplifies learning LabVIEW for FRC
 Only need a PC and a joystick
 Same code can run on a real robot

• Experiment with other robot projects
 Mecanum drive, arm and gripper

Questions?
Visit us at the National Instruments booth

Presenter
Presentation Notes
Notice that the robot project wizard has two other projects that include simulated robots: Arcade Robot with Arm – same arcade drive, but the robot also includes an arm and gripper. Mecanum Robot with Arm – mecanum drive system with an arm and gripper.

	Slide Number 1
	LabVIEW Programming for FRC Beginners�(Using Simulation for Testing)
	What you will learn
	System Topology
	All you need for Simulation
	What is LabVIEW?
	What is LabVIEW for FRC?
	LabVIEW for FRC with Simulation
	Getting Started Window
	Create FRC Robot Project
	Run Robot main.vi – Test Default Code
	Team Code VIs
	Default Joystick and Motor Code
	Robot Simulation Readme.html�(Simulated Robot Manifest)
	Add Camera Servo Code
	Add Gyro and Ultrasonic Code
	Add Autonomous Code
	Add Code for Dashboard (Robot Side)
	Team Code VIs - Review
	Create FRC Dashboard Project
	Add Indicators to Dashboard Main.vi
	Troubleshoot Robot Code
	Conclusion

