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Why study Boolean Algebra?  4

It is highly desirable to find the simplest circuit 
implementation with the smallest number of gates or 
wires.

We can use Boolean minimization process to reduce a 
Boolean function (expression) to its simplest form:  The 
result is an expression with the fewest literals and thus 
less wires in the final gate implementation.

Boolean Algebra

§ George Boole (1815-1864), a mathematician 
introduced a systematic treatment of logic. 

§ He developed a consistent set of postulates that 
were sufficient to define a new type of algebra: 
Boolean Algebra (similar to Linear Algebra)

§ Many of the rules are the same as the ones in 
Linear Algebra.  

Boolean Algebra (continued)
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• There are 6 fundamental laws, or axioms, used 
to formulate various algebraic structures:

1. Closure: Boolean algebra operates over a field of 
numbers, B = {0,1}:
For every x, y in B:

§ x + y is in B
§ x . y is in B (1,0)

(1,0)
(1,0)

(1,0)
(1,0)
(1,0)

Laws of Boolean Algebra

2. Commutative laws:  For every x, y in B,
§ x + y = y + x
§ x . y = y . x

x

y
F = x + y

y

x
F = y + x

x

y
F = x.y

y

x
F = y.x

» Similar to Linear Algebra

Laws of Boolean Algebra (continued)
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3. Associative laws:  For every x, y, z in B,
§ (x + y) + z = x + (y + z) = x + y + z
§ (xy)z = x(yz) = xyz

z

x
y

F = xyz

z
y

x
F = xyz

» Similar to Linear Algebra

Laws of Boolean Algebra (continued)

4. Distributive laws:  For every x, y, z in B,

• x + (y.z) = (x + y)(x + z)  [+ is distributive over .]

• x.(y + z) = (x.y) + (x.z)   [. is distributive over +]

» Similar to Linear Algebra

» NOT Similar to Linear Algebra

Laws of Boolean Algebra (continued)
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5. Identity laws:
§ A set B is said to have an identity element with 
respect to a binary operation {.} on B if there exists an 
element designated by 1 in B with the property: 1 . x

= x Example:  AND operation

§ A set B is said to have an identity element with respect 
to a binary operation {+} on B if there exists an element 
designated by 0 in B with the property: 0 + x = x

Example:  OR operation

» Similar to Linear Algebra

Laws of Boolean Algebra (continued)

6.  Complement

For each x in B, there exists an element x’ in B (the 
complement of x) such that:

• x + x’ = 1 
• x . x’ = 0

We can also use x to represent complement.

» Similar to Linear Algebra

Laws of Boolean Algebra (continued)
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Commutative
x + y = y + x xy = yx
Associative 
(x + y) + z = x + (y + z) 
(xy)z = x(yz) 
Distributive
x + (yz) = (x + y)(x + z)
x(y + z) = (xy) + (xz) 

Identity 

x + 0 = x x . 1 = x
Complement

x + x = 1 x . x = 0

OR with 1      AND with 0

x + 1 = 1 x . 0 = 0 

Laws of Boolean Algebra (Summary)

§ Theorem 1(a):
x + x = x
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§ Theorem 1(b):
x . x = x
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Other Theorems
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§ Theorem 2(a):
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§ Theorem 2(b):
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Other Theorems (continued)

)'('' yxyx +=⋅
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)'('' yxyx ⋅=+
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NAND

x
y

NOR

Gate Equivalency and DeMorgan’s Law
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Q:  Why is Gate Equivalency useful?

A:  It allows us to build functions using only one 
gate type.

Q:  Why are digital circuits constructed with 
NAND/NOR rather than with AND/OR?

A:  NAND and NOR gates are smaller, faster, and 
easier to fabricate with electronic components.  They 
are the basic gates used in all IC digital logic.

Digital Logic Q’s & A’s

x

z

Vdd

gnd

y

z = x  y.

1

2

3 4

x or y: ‘low’
transistor 1 or 2 is OFF
transistor 3 or 4 is ON

z = ‘high’

x and y: ‘high’
transistor 1 and 2 are ON
transistor 3 and 4 are OFF

z = ‘low’

CL

Digital IC’s – Transistor Level
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z

Vdd

y

z = a + b

Vdd

y
x

z z = (x+y) z. 

x

Digital IC’s (continued)

Example 1: zyxF '1 +=

x

y
z

F1

Implementation of Boolean Functions
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Example 2: ''''1 xyyzxzyxF ++=

x

y

z
F1

Implementation of Boolean Functions

§ Try another implementation using a simplified F2:

''     
')1('      

')'('      

''''2

xyzx
xyzx

xyyyzx

xyyzxzyxF
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++=

x
y F2

z

What are the advantages of this implementation?

This implementation has fewer gates and fewer inputs to
the gates (or wires) than the previous one.

Implementation of Boolean Functions
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§ Simplify the following Boolean function to a minimum
number of terms: yzzxxyF ++= '3

x
y F3

z

Simplifying Boolean Functions
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More on complements (DeMorgan)

EDCABF ++= ')'(
§ Find the complement of: § Show that the complement of ')( xyxx =+
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§ Draw the logic diagram for the following function: F = (a.b)+(b.c)

a
b

c

F

Implementation of Boolean Functions

§ Using ONLY NAND gates, draw a schematic for the following 
function: F = (a.b)+(b.c)

          

        
]')'.)'.(.[(        

]')]'.().[[()''(

cbba

cbbaF

=

+=

a
b

c

F

Implementation of Boolean Functions
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§ Using only OR and NOT gates, draw a schematic for the 
following function: zyyxxyF ''' ++=
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Implementation of Boolean Functions

n binary variables can be combined to form 2n terms (AND terms),
called minterms (SOP).

In a similar fashion, n binary variables can be combined to form 
2n terms (OR terms), called maxterms (POS).

* Note that each maxterm is the complement of its corresponding
minterm and vice versa.

Ø MINTERMS AND MAXTERMS:

Minterms and Maxterms
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x   y   z
0   0   0 x’y’z’ mo x+y+z Mo
0   0   1 x’y’z m1 x+y+z’ M1

0   1   0 x’yz’ m2 x+y’+z  M2
0   1   1 x’yz m3 x+y’+z’ M3
1   0   0 xy’z’ m4 x’+y+z  M4
1   0   1 xy’z m5 x’+y+z’ M5

1   1   0 xyz’ m6 x’+y’+z  M6

1   1   1 xyz m7 x’+y’+z’ M7

minterms Maxterms

Table 2-3:
Minterms and Maxterms for Three Binary Variables

Minterms and Maxterms (continued)

x y z F1 F2
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 0 1
1 0 0 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

§ Given the truth table, express F1 in sum of minterms

765411 )7,6,5,4,1(),,( mmmmmzyxF ++++=∑=

)()'()'()''()''( xyzxyzzxyzxyzyx ++++=
§ Find F2

Σminterms and Πmaxterms
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§ Repeat for product of maxterms. 

3201 )3,2,0(),,( MMMzyxF ⋅⋅=∏=

)'')(')(( zyxzyxzyx ++++++=

x y z F1 F2
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 0 1
1 0 0 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

Σminterms and Πmaxterms

Express the Boolean function zyxF '+= in a sum of
minterms, and then in a product of Maxterms. 

Product of maxterms (POS)?
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mmmmmzyxF
xyzxyzzxyzxyzyxzyxF

zyxzxyxxzyzy
zxyzxyzzxyxy

xyzxyzzzxyxy
xyxyyyxx

Adding all terms and excluding recurring terms:

(SOP)

Σminterms and Πmaxterms

320)3,2,0( MMM ⋅⋅=∏



15

3-input exclusive-OR (XOR) logic gate:

Fx
y
z

x
F

z
y

ZYXF ⊕⊕=

1111

0011

0101

1001

0110

1010

1100

0000

FZYX

XOR Logic gate


