Boolean Algebra

Why study Boolean Algebra?

It is highly desirable to find the <u>simplest circuit</u> <u>implementation</u> with the smallest number of gates or wires.

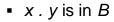
We can use *Boolean minimization* process to reduce a Boolean function (expression) to its simplest form: The result is an expression with the fewest literals and thus less wires in the final gate implementation.

Boolean Algebra (continued)

- George Boole (1815-1864), a mathematician introduced a systematic treatment of logic.
- He developed a consistent set of postulates that were sufficient to define a new type of algebra: Boolean Algebra (similar to Linear Algebra)
- Many of the rules are the same as the ones in Linear Algebra.

Laws of Boolean Algebra

- There are 6 fundamental laws, or axioms, used to formulate various algebraic structures:
- 1. Closure: Boolean algebra operates over a field of
numbers, $B = \{0,1\}$:
For every x, y in B:(1,0)
(1,0)(1,0)
(1,0)
- *x* + *y* is in *B*

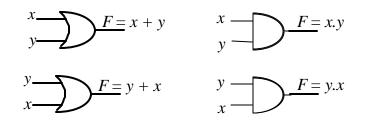


$$(1,0)$$
 (1,0) (1,0)

Laws of Boolean Algebra (continued)

- 2. Commutative laws: For every x, y in B,
- x + y = y + x
- *x*. *y* = *y*. *x*

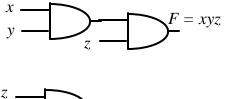
» Similar to Linear Algebra

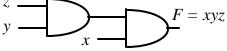


Laws of Boolean Algebra (continued)

- 3. Associative laws: For every x, y, z in B,
- (x + y) + z = x + (y + z) = x + y + z
- (xy)z = x(yz) = xyz

» Similar to Linear Algebra





Laws of Boolean Algebra (continued)

- 4. Distributive laws: For every x, y, z in B,
- x + (y.z) = (x + y)(x + z) [+ is distributive over .] » NOT Similar to Linear Algebra
- x.(y + z) = (x.y) + (x.z) [. is distributive over +]
 » Similar to Linear Algebra

Laws of Boolean Algebra (continued)

5. Identity laws:

A set *B* is said to have an identity element with respect to a binary operation {.} on *B* if there exists an element designated by 1 in *B* with the property: <u>1 . x</u> = x Example: AND operation
A set *B* is said to have an identity element with respect to a binary operation {+} on *B* if there exists an element designated by 0 in *B* with the property: <u>0 + x = x</u> Example: OR operation

» Similar to Linear Algebra

Laws of Boolean Algebra (continued)

6. Complement

For each *x* in *B*, there exists an element *x*' in *B* (the complement of *x*) such that:

- x + x' = 1 » Similar to Linear Algebra
- $x \cdot x' = 0$

We can also use \overline{x} to represent complement.

Laws of Boolean Algebra (Summary)

Commutative	Identity	
$x + y = y + x \qquad xy = yx$ Associative (x + y) + z = x + (y + z)	x + 0 = x Complement	$x \cdot 1 = x$
(x + y) + z = x + (y + z) $(xy)z = x(yz)$	$x + \overline{x} = 1$	$x \cdot \overline{x} = 0$
Distributive x + (yz) = (x + y)(x + z)	OR with 1	AND with 0
x(y+z) = (xy) + (xz)	x + 1 = 1	$x \cdot 0 = 0$

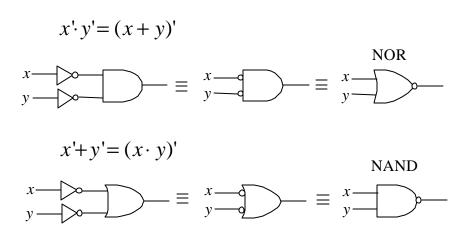
Other Theorems

■ Theorem 1(a):	■ Theorem 1(b):
x + x = x	$x \cdot x = x$
x + x = x	$x \cdot x = x$
x + x = (x + x).1	$x \cdot x = xx + 0$
=(x+x)(x+x')	= xx + xx'
= xx + xx'	=x(x+x')
= x + 0	$= x \cdot 1$
= x	= x

Other Theorems (continued)

■ Theorem 2(a):	• Theorem 2(b):
x + 1 = 1	x + xy = x
x + 1 = 1.(x + 1)	x + xy = x(1 + y)
= (x + x')(x + 1)	=x(y+1)
=xx+x'.1	= x.1
= x + x'	= x
=1	

Gate Equivalency and DeMorgan's Law



Digital Logic Q's & A's

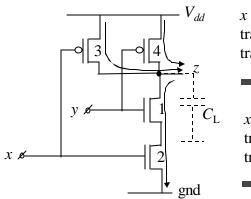
Q: Why is Gate Equivalency useful?

A: It allows us to build functions using only one gate type.

Q: Why are digital circuits constructed with NAND/NOR rather than with AND/OR?

A: NAND and NOR gates are smaller, faster, and easier to fabricate with electronic components. <u>They are the basic gates used in all IC digital logic</u>.

Digital IC's – Transistor Level



x or *y*: 'low' transistor 1 or 2 is OFF transistor 3 or 4 is ON

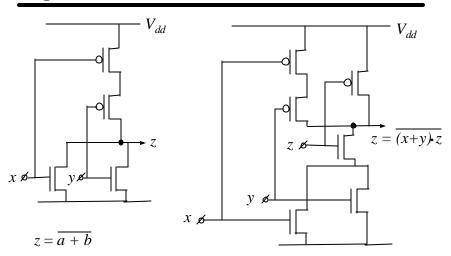
 \implies z = 'high'

x and *y*: 'high' transistor 1 and 2 are ON transistor 3 and 4 are OFF

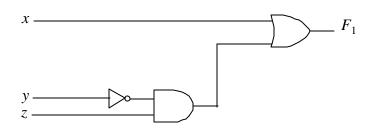
$$\implies$$
 $z = `low'$

 $z = x \cdot y$

Digital IC's (continued)



Example 1: $F_1 = x + y'z$



Example 2: $F_1 = x'y'z + x'yz + xy'$

Implementation of Boolean Functions

• Try another implementation using a simplified F_2 : $F_2 = x' y' z + x' yz + xy'$

$$= x'z(y'+y) + xy$$

$$= x'z(1) + xy'$$

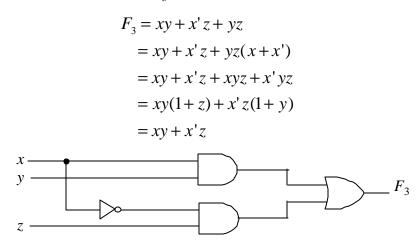
$$= x'z + xy'$$

What are the advantages of this implementation?

This implementation has fewer gates and fewer inputs to the gates (or wires) than the previous one.

Simplifying Boolean Functions

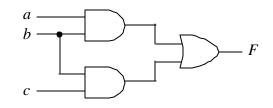
• Simplify the following Boolean function to a minimum number of terms: $F_3 = xy + x'z + yz$



More on complements (DeMorgan)

• Find the complement of: F = (AB'+C)D'+E F' = [(AB'+C)D'+E]' = [(AB'+C)D']'E' = [(AB'+C)'+D'']E' = [(AB'+C)'+D'']E' = [(AB')'C'+D]E' = (A'+B)C'E'+DE'• Show that the complement of x(x + y) = x' [x(x + y)]' = x'+(x + y)' = x'+(x + y)' = x'(1 + y')= x'(1) = x'

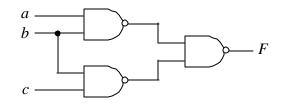
• Draw the logic diagram for the following function: F = (a.b)+(b.c)

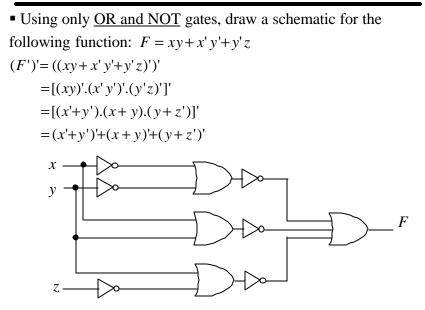


Implementation of Boolean Functions

• Using <u>ONLY NAND</u> gates, draw a schematic for the following function: F = (a.b)+(b.c)

(F')' = [[(a.b) + (b.c)]']'= [(a.b)'.(b.c)']'





Minterms and Maxterms

> MINTERMS AND MAXTERMS:

n binary variables can be combined to form 2^n terms (AND terms), called *minterms* (SOP).

In a similar fashion, *n* binary variables can be combined to form 2^n terms (OR terms), called <u>maxterms (POS)</u>.

* Note that each maxterm is the complement of its corresponding minterm and vice versa.

Minterms and Maxterms	(continued)
-----------------------	-------------

xyz	minte	erms	Maxte	erms
0 0 0	<i>x'y'z'</i>	m_{0}	x+y+z	M
0 0 1	x 'y 'z	m_1°	x+y+z'	M
0 1 0	x 'yz '	m_2	x+y'+z	M
0 1 1	x'yz	m_3	x+y'+z'	M
1 0 0	xy'z'	m_4	<i>x</i> '+ <i>y</i> + <i>z</i>	M
1 0 1	xy'z	m_5	<i>x</i> '+ <i>y</i> + <i>z</i> '	M_{i}
1 1 0	xyz'	m_6	<i>x</i> '+ <i>y</i> '+ <i>z</i>	M_{c}
1 1 1	xyz	m_7	x'+y'+z'	M

<u>Table 2-3:</u> *Minterms and Maxterms for Three Binary Variables*

Sminterms and **P**maxterms

• Given the truth table, express F_1 in sum of minterms

x	У	z	F_{1}	F_2
0	0	0	0	1
0	0	1	1	0
0	1	0	0	1
0	1	1	0	1
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

- $F_1(x, y, z) = \sum (1, 4, 5, 6, 7) = m_1 + m_4 + m_5 + m_6 + m_7$
- = (x'y'z) + (xy'z') + (xy'z) + (xyz') + (xyz)

• Find F_2

Sminterms and **P**maxterms

• Repeat for product of maxterms.

x	у	z	F_1	F
0	0	0	0	1
0	0	1	1	0
0	1	0	0	1
0	1	1	0	1
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

 $F_1(x, y, z) = \prod (0, 2, 3) = M_0 \cdot M_2 \cdot M_3$

= (x + y + z)(x + y' + z)(x + y' + z')

Sminterms and **P**maxterms

Express the Boolean function F = x + y'z in a sum of minterms, and then in a product of Maxterms.

$$x = x(y + y') = xy + xy'$$

$$xy = xy(z + z') = xyz + xyz'$$

$$xy' = xy'(z + z') = xy'z + xy'z'$$

$$y'z = y'z(x + x') = xy'z + x'y'z$$

Adding all terms and excluding recurring terms:

$$F(x, y, z) = x'y'z + xy'z' + xyz' + xyz$$
(SOP)

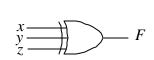
$$F(x, y, z) = m_1 + m_4 + m_5 + m_6 + m_7 = \sum(1,4,5,6,7)$$

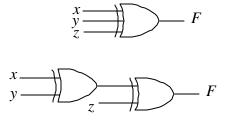
Product of maxterms (POS)? $\prod (0,2,3) = M_0 \cdot M_2 \cdot M_3$

XOR Logic gate

3-input exclusive-OR (XOR) logic gate:

 $F = X \oplus Y \oplus Z$





Х	Y	Ζ	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1